Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?

نویسندگان

  • Jyoti D Malhotra
  • Randal J Kaufman
چکیده

The endoplasmic reticulum (ER) is a well-orchestrated protein-folding machine composed of protein chaperones, proteins that catalyze protein folding, and sensors that detect the presence of misfolded or unfolded proteins. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory pathway and ensures that persistently misfolded proteins are directed toward a degradative pathway. The unfolded protein response (UPR) is an intracellular signaling pathway that coordinates ER protein-folding demand with protein-folding capacity and is essential to adapt to homeostatic alterations that cause protein misfolding. These include changes in intraluminal calcium, altered glycosylation, nutrient deprivation, pathogen infection, expression of folding-defective proteins, and changes in redox status. The ER provides a unique oxidizing folding-environment that favors the formation of the disulfide bonds. Accumulating evidence suggests that protein folding and generation of reactive oxygen species (ROS) as a byproduct of protein oxidation in the ER are closely linked events. It has also become apparent that activation of the UPR on exposure to oxidative stress is an adaptive mechanism to preserve cell function and survival. Persistent oxidative stress and protein misfolding initiate apoptotic cascades and are now known to play predominant roles in the pathogenesis of multiple human diseases including diabetes, atherosclerosis, and neurodegenerative diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endoplasmic reticulum stress in age-related macular degeneration: trigger for neovascularization.

Age-related macular degeneration (AMD) can be classified into two main categories: the atrophic, dry form and the exudative, wet form. The crucial difference between dry and wet AMD is the development of choroidal neovascularization in wet AMD. One fundamental cause of the neovascularization is the increased expression of VEGF (vascular endothelial growth factor) in retinal pigment epithelial c...

متن کامل

Effects of Oxidative Stress on the Solubility of HRD1, a Ubiquitin Ligase Implicated in Alzheimer’s Disease

The E3 ubiquitin ligase HRD1 is found in the endoplasmic reticulum membrane of brain neurons and is involved in endoplasmic reticulum-associated degradation. We previously demonstrated that suppression of HRD1 expression in neurons causes accumulation of amyloid precursor protein, resulting in amyloid β production associated with endoplasmic reticulum stress and apoptosis. Furthermore, HRD1 lev...

متن کامل

Schisandrin B: A Double-Edged Sword in Nonalcoholic Fatty Liver Disease

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver lesions ranging from hepatic steatosis, nonalcoholic steatohepatitis, hepatic cirrhosis, and hepatocellular carcinoma. The high global prevalence of NAFLD has underlined the important public health implications of this disease. The pathogenesis of NAFLD involves the abnormal accumulation of free fatty acids, oxidative stress, endop...

متن کامل

Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces.

A number of pathophysiological insults lead to accumulation of unfolded proteins in the endoplasmic reticulum (ER) and cause ER stress. In response to accumulation of unfolded/misfolded proteins, cells adapt themselves to the stress condition via the unfolded protein response (UPR). For the cells, UPR is a double-edged sword. It triggers both prosurvival and proapoptotic signals. ER stress and ...

متن کامل

The role of endoplasmic reticulum stress in maintaining and targeting multiple myeloma: a double-edged sword of adaptation and apoptosis

Increased cellular protein production places stress on the endoplasmic reticulum (ER), because many of the nascent proteins pass through the ER for folding and trafficking. Accumulation of misfolded proteins in the ER triggers the activation of three well-known pathways including IRE1 (inositol requiring kinase 1), ATF6 (activating transcription factor 6), and PERK (double stranded RNA-activate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antioxidants & redox signaling

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2007